Rare fireball meteor could contain ‘building blocks of life’

Pieces of an extremely rare meteorite recovered by a team of scientists could contain the ‘building blocks of life’.

In a major event for UK science, the meteorite that fell from the fireball that lit up the sky over the UK and Northern Europe on Sunday 28 February, has been located.

Almost 300g of a very rare meteorite, known as a carbonaceous chondrite, survived its fiery passage through the Earth’s atmosphere and landed on a driveway in the small Cotswold town of Winchcombe.

A team of UK scientists guided by meteor specialists – some from Devon – recovered pieces of the extremely rare meteorite, a type which has never fallen anywhere in the UK before.

Fragments of the fireball were located in Winchcombe, Gloucestershire and are now in the care of museum scientists.

The meteorite, likely to be known as the Winchcombe meteorite, is an extremely rare type called a carbonaceous chondrite, which have been known to contain organics and amino acids – the ingredients for life.

People across the UK reported sightings of a spectacular “fireball” meteor, lighting up the night sky at just before 10pm on Sunday February 28.

The UK Meteor Observation Network, which monitors meteor sightings in Britain, at the time said it had received hundreds of reports.

After analysing data and pinpointing the location of the fallen meteorite, scientists from the UK Meteor Observation Network – which has two stations in Devon – liaised with the Natural History Museum, who subsequently located the ‘fireball’ meteorite.

The two stations based in Devon are at Exeter Observatory and at the Norman Lockyer Observatory in Sidmouth.

John Maclean, an Exeter-based astronomy expert and researcher with the UK Meteor Observation Network said: “It’s one of the most exciting things that has happened in the world of meteorites for many years.

Held meteorite recovered from Winchcombe
(Image: Trustees of the Natural History Museum)

“This software allows us to analyse these figures of fireballs and to pinpoint where they land.

“This is the first one we’ve analysed and actually figured out where it landed.

“That’s a huge step for us – we’re a mixture of professional and amateur scientists – just to get the system working so that we can analyse it correctly and pinpoint the fall of a meteorite is amazing, I don’t think it’s been done anywhere in the world, the way we’ve done it.”

Moving forward, the meteorite will be the target of an unprecedented research effort providing answers to questions about the early history of our solar system and life on Earth

Footage of the fireball from the public and the UK Fireball Alliance (UKFAll) camera networks helped locate the meteorite and determine where it came from in the solar system, linking this incredible sample to its origins in space.

Recovering abundant quantities of this pristine meteorite so quickly is comparable to the samples recently returned from space by the Hayabusa2 mission.

The meteorite will be the target of an unprecedented research effort
(Image: Trustees of the Natural History Museum)

Specialised cameras across the country as part of UKFAll were able to recreate the flight path, allowing scientists to determine exactly where in the solar system it came from, and predict where it fell.

The original space rock was travelling at nearly 14km per second before hitting the Earth’s atmosphere.

The meteorite was retrieved in such a good condition, so quickly after its fall, that it is comparable to the samples returned from space missions, both in quality and quantity.

Speaking on the experience of being a part of this groundbreaking discovery, John Maclean said: “By using our network of cameras here in the UK, we could gather the data, analyse it, and work out the orbit and trajectory of its entry.

“Then it was like, hey, that’s just north of Cheltenham.

“There’s that aspect of it, working for years on this technique, and then to have it proven.

“Then the second aspect is the fact that no meteorite has been discovered in the UK since 1991, and there’s never been the discovery of a carbonaceous chondrite meteorite in the UK, ever.

“They’re the rarest, and most interesting because they contain the building blocks of life, like amino acids and organics.

“They help us to understand the solar system and how life came to Earth, perhaps. So, that’s how important it is.”

Dr Ashley King, UK Research and Innovation Future Leaders Fellow in the Department of Earth Sciences at the Natural History Museum, was among the first on the scene when the meteorite was discovered on Wednesday and has been advising on the handling and care of the meteorite since. He said: “Nearly all meteorites come to us from asteroids, the leftover building blocks of the solar system that can tell us how planets like the Earth formed.

“The opportunity to be one of the first people to see and study a meteorite that was recovered almost immediately after falling is a dream come true!”

Dr Richard Greenwood, Research Fellow in Planetary Sciences at the Open University was the first scientist to identify and advise on the meteorite.

You can stay up to date on the top news near you with DevonLive’s FREE newsletters – enter your email address at the top of the page or sign up to our newsletters here

Dr Greenwood said: “I was in shock when I saw it and immediately knew it was a rare meteorite and a totally unique event.

“It’s emotional being the first one to confirm to the people standing in front of you that the thud they heard on their driveway overnight is in fact the real thing.”

Once the meteorite was identified as genuine, plans were made for it to be safely moved to the museum where it will be properly cared for until it begins an official process of classification to establish its validity and scientific significance.

A team of specialist scientists from across the UK have been successfully searching the rest of the predicted fall area for more fragments including colleagues from The University of Glasgow, The University of Manchester, The Open University, The University of Plymouth, and Imperial College London.

‘A first for UK science’

Held meteorite recovered from Winchcombe
(Image: Trustees of the Natural History Museum)

There are approximately 65 thousand known meteorites on Earth. Only 1206 have been witnessed to fall and of these only 51 are carbonaceous chondrites.

This is the first known carbonaceous chondrite to have been found in the UK, and the first meteorite recovered in the UK in 30 years.

The last meteorite that was discovered in the UK was the Glatton meteorite that landed in a residential garden in 1991.

A victory for UK citizen science, the fireball was seen by thousands of eyewitnesses across the UK and northern Europe, many of whom reported it to the UK Meteor Observation Network, and was captured on many fireball cameras and home surveillance cameras when it fell to Earth at 21:54 on Sunday 28 February.

Meteorites are incredibly old – their age of about 4567 million years is much older than any rock from the Earth.

Almost all these “space rocks” have been blasted off asteroids, and travel for many thousands of years through space before being captured – usually by the Sun, but occasionally by Earth.

They travel through the atmosphere, sometimes – like the one that fell in Gloucestershire – producing a bright fireball before landing on Earth.

Over 1000 meteorites the size of a football are believed to fall to Earth every year, however it is very rare for any of them to be seen to fall and recovered.

All about meteorites

What is a meteorite?

Meteorites are solid pieces of rock that originate from outer space and have found their way to earth.

Millions of meteorites travel through the Earth’s atmosphere each day but only a few survive to reach the Earth’s surface.

Meteorites are usually made up of metals, usually iron and nickel.

How do you spot it?

Meteorites are misshapen with a smooth surface and no sharp edges.

Although some meteorites have a few holes on them, they are pieces of solid rock and should never look ‘bubbly’ or ‘peppered with holes’.

Because they are usually made out of iron or nickel, meteorites are, in most cases, magnetic.

Meteorites have a hard surface called a ‘fusion layer’. Filing off this layer should expose the shiny interior.

Carbonaceous chondrites, like the one just discovered, are made of a mixture of minerals and organic compounds – including amino acids.

They are the most primitive and pristine materials of the solar system and can provide unique information on where water and the building blocks of life were formed and what planets are made from – some of the biggest questions asked by the scientific community.

Prof Sara Russell, Merit Researcher in Cosmic Mineralogy at the Natural History Museum advised on the care of the meteorite once it was located.

Prof Russell said: “The Japanese space mission Hayabusa2 returned around 4.5 g of fragments from asteroid Ryugu to Earth in December last year, and at the Museum we are helping to characterise this material.

“The Winchcombe meteorite fall is very timely as the rock is similar to Ryugu in many ways, and we can use the meteorite to rehearse for mission analyses.”

‘Goodwill and teamwork’

Jim Rowe of UKFAll, a collaboration between the UK’s meteor and fireball camera networks, said: “Three years ago a meteorite fell in Dorset.

Back then we had good data but no action plan.

“So, we set up UKFAll, and this is the outcome! Each of the six UK meteor camera networks contributed data as did three international teams who analysed the data, so it’s been a real global collaborative effort tracking down this important meteorite.”

Dr Luke Daly from the University of Glasgow co-leads the UK Fireball Network, part of UKFAll and the Global Fireball Observatory, commented: “It’s thanks to this international collaboration, including researchers as far away as Australia, that we were able to calculate where this meteorite landed so quickly and with such accuracy, as well as where it originated from in the asteroid belt, a rarity that can be said of only about 40 of the 65,000 meteorites on Earth.

“Goodwill and teamwork have produced a stellar result.”

The team believes that more fragments may yet be discovered. This fragile meteorite may be found as black stones, or as piles of tiny rock or even dust.

The Natural History Museum asks that, If you are local to the area and find something that could be meteorite, be sure to take a photo of it and record its location, before collecting the sample using a gloved hand or in aluminium foil and contacting the Natural History Museum.

However, they ask that people please respect local lockdown COVID-19 regulations.

Devon Live